New monitoring method based principal component analysis and fuzzy clustering

نویسندگان

  • Khaled Ouni
  • Hedi Dhouibi
  • Lotfi Nabli
  • Hassani Messaoud
چکیده

This work concerns the principal component analysis applied to the supervision of quality parameters of the flour production line. Our contribution lies in the combined use of the principal component analysis technique and the clustering algorithms in the field of production system diagnosis. This approach allows detecting and locating the system defects, based on the drifts of the product quality parameters. A comparative study between the classification performance by clustering algorithms and the principal component analysis has been proposed. Locating parameters in defect is based on the technique of fault direction in partial least square.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Qualitative/Quantitative Dynamic Simulation of Processing Systems

In this article the methodology proposed by Li and Wang for mixed qualitative and quantitative modeling and simulation of temporal behavior of processing unit is reexamined and extended to more complex case. The main issue of their approach considers the multivariate statistics of principal component analysis (PCA), along with clustered fuzzy digraphs and reasoning. The PCA and fuz...

متن کامل

Unsupervised Clustering for Fetal State Assessment Based on Selected Features of the Cardiotocographic Signals

In modern obstetrics the cardiotocography is a routine method of fetal condition assessment based mainly on analysis of the fetal heart rate signals. The correct interpretation of recorded traces from a bedside monitor is very difficult even for experienced clinicians. Therefore, computerized fetal monitoring systems are used to yield the quantitative description of the signal. However, the eff...

متن کامل

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

متن کامل

Intelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System

Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...

متن کامل

Brain Tissue Classification from Multispectral MRI by Wavelet based Principal Component Analysis

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012